MATRICES (REVIEW FROM LINEAR ALGEBRA)

• An m×n ("m by n") matrix A over a set S is a rectangular array of elements of S arranged into m rows and n columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \dots & a_{mn} \end{bmatrix} \leftarrow i^{\text{th}} \text{ row}$$

$$\uparrow j^{\text{th}} \text{ column}$$

- We write $A = (a_{ij})$
- The a_{ij} entry of the A matrix is called the ijth entry of A
- A matrix with the same number of rows and columns (m=n) is called a square matrix. The main diagonal of a square matrix of size n×n consists of all the entries a₁₁, a₂₂, ..., a_{nn}
- Let A=(a_{ij}) be an m×k matrix and B=(b_{ij}) a k×n matrix with real entries. The (matrix) product of A times B, denoted AB is the m×n matrix C=(c_{ij})

ra_{11}	<i>a</i> ₁₂		a_{1k}	b_{11}	b_{12}	 b _{1j}	 b_{1n}	$\Gamma^{c_{11}}$	C_{12}		c_{1j}	 c_{1n}
<i>a</i> ₂₁	a_{22}		$\begin{bmatrix} a_{1k} \\ a_{2k} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix}$	b_{21}	b ₂₂	 b _{2i}	 b_{2n}	<i>c</i> ₂₁	C_{22}	•••	C_{2j}	 C_{2n}
:	÷		:	÷	÷	:	•	· ·	•		•	• •
a_{i1}	a_{i2}	•••	a _{ik}	:	÷	:	: =	c_{i1}	c_{i2}	•••	C _{ij}	 C _{in}
1 :	÷		:	÷	÷	:	:	1 :	:		:	:
La_{m1}	a_{m2}		$a_{mk} \rfloor \lfloor b$	o_{k1}	b_{k2}	 b _{kj}	 b_{kn}	c_{m1}	C_{m2}		C _{mj}	 c_{mn}

Where $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ik}b_{kj} = \sum_{r=1}^{k} a_{ir}b_{rj}$ for all i from 1 to m and j from 1 to n

- Matrix multiplication is **associative** but **not commutative**.
- For any positive integer n, the identity matrix I_n is the n×n matrix where all the entries are 0 except for the main diagonal entries which are all 1.
- Identity matrices work as identity elements in matrix multiplication: if A=(a_{ij}) is an m×n matrix, then I_m×A = A×I_n = A
- For any n×n matrix A, the powers of A are defined as follows:

$$A^0 = I_n$$
 $A^n = AA^{n-1}$ for all integers $n \ge 1$

ADJACENCY MATRIX OF A GRAPH

- Let G be a directed graph with ordered vertices $v_1, v_2, ..., v_n$. The adjacency matrix of G is the n×n matrix $A = (a_{ij})$ such that for i and j from 1 to n, a_{ij} =the number of arrows from v_i to v_j .
- Let G be an undirected graph with ordered vertices $v_1, v_2, ..., v_n$. The adjacency matrix of G is the n×n matrix $A = (a_{ij})$ such that for i and j from 1 to n, a_{ij} =the number of edges connecting v_i and v_j .
- Note that the adjacency matrix of an undirected graph is symmetric, i.e. for any i and j from 1 to n, $a_{ij} = a_{ji}$

GRAPHS PROPERTIES

Edgeless graph

• The adjacency matrix of an edgeless graph is a zero matrix.

Complete graph

• The adjacency matrix of a complete graph is such that all entries are 1 except for the main diagonal entries which are all 0

Connected components

• Let G be a graph with connected components G₁, G₂, ..., G_k. If each connected component G_i has n_i vertices **numbered consecutively**, then the adjacency matrix of G has the form

$$\begin{bmatrix} A_1 & 0 & \dots & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \dots & A_i & \dots & 0 \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & A_k \end{bmatrix}$$

Where each A_i is the $n_i \times n_i$ adjacency matrix of G_i and the 0's represent matrices whose entries are all 0.

COUNTING WALKS OF LENGTH N

• Let G be a graph with ordered vertices $v_1, v_2, ..., v_m$ and A be the adjacency matrix of G, then

for each positive integer n and for all integers i,j from 1 to m, the ijth entry of A^n = the number of walks of length n from v_i to v_j .