MATRICES (REVIEW FROM LINEAR ALGEBRA)

- An $m \times n$ (" m by n ") matrix A over a set S is a rectangular array of elements of S arranged into m rows and n columns:

$$
A=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \cdots & a_{1 j} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 j} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i j} & \ldots & a_{i n} \\
\vdots & \vdots & & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right] \leftarrow \mathrm{i}^{\text {th }} \text { row }
$$

$$
\uparrow \mathrm{j}^{\text {th }} \text { column }
$$

- We write $\mathrm{A}=\left(\boldsymbol{a}_{\mathrm{ij}}\right)$
- The a_{ij} entry of the A matrix is called the ijth entry of A
- A matrix with the same number of rows and columns $(m=n)$ is called a square matrix. The main diagonal of a square matrix of size $n \times n$ consists of all the entries $a_{11}, a_{22}, \ldots, a_{n n}$
- Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be an $\mathrm{m} \times \mathrm{k}$ matrix and $\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)$ a $\mathrm{k} \times \mathrm{n}$ matrix with real entries. The (matrix) product of A times B , denoted AB is the $\mathrm{m} \times \mathrm{n}$ matrix $\mathrm{C}=\left(\mathrm{c}_{\mathrm{ij}}\right)$

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \ldots & a_{i k} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m k}
\end{array}\right]\left[\begin{array}{cccccc}
b_{11} & b_{12} & \ldots & b_{1 j} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 j} & \ldots & b_{2 n} \\
\vdots & \vdots & & \vdots & & \vdots \\
\vdots & \vdots & & \vdots & & \vdots \\
\vdots & \vdots & & \vdots & & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k j} & \ldots & b_{k n}
\end{array}\right]=\left[\begin{array}{cccccc}
c_{11} & c_{12} & \ldots & c_{1 j} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 j} & \ldots & c_{2 n} \\
\vdots & \vdots & & \vdots & & \vdots \\
c_{i 1} & c_{i 2} & \ldots & c_{i j} & \ldots & c_{i n} \\
\vdots & \vdots & & \vdots & & \vdots \\
c_{m 1} & c_{m 2} & \ldots & c_{m j} & \ldots & c_{m n}
\end{array}\right]
$$

Where $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{il}} \mathrm{b}_{\mathrm{lj}}+\mathrm{a}_{\mathrm{i} 2} \mathrm{~b}_{2 \mathrm{j}}+\ldots+\mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}=\sum_{r=1}^{k} a_{i r} b_{r j}$ for all i from 1 to m and j from 1 to n

- Matrix multiplication is associative but not commutative.
- For any positive integer n, the identity matrix I_{n} is the $n \times n$ matrix where all the entries are 0 except for the main diagonal entries which are all 1 .
- Identity matrices work as identity elements in matrix multiplication: if $A=\left(a_{i j}\right)$ is an $m \times n$ matrix, then $I_{m} \times A=A \times I_{n}=A$
- For any $\mathrm{n} \times \mathrm{n}$ matrix A , the powers of A are defined as follows:
$\mathrm{A}^{0}=\mathrm{I}_{\mathrm{n}}$
$\mathrm{A}^{\mathrm{n}}=\mathrm{AA}^{\mathrm{n}-1}$
for all integers $\mathrm{n} \geq 1$

ADJACENCY MATRIX OF A GRAPH

- Let G be a directed graph with ordered vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$. The adjacency matrix of G is the $\mathrm{n} \times \mathrm{n}$ matrix $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ such that for i and j from 1 to $n, a_{i j}=$ the number of arrows from v_{i} to v_{j}.
- Let G be an undirected graph with ordered vertices $v_{1}, v_{2}, \ldots, v_{n}$. The adjacency matrix of G is the $n \times n$ matrix $A=\left(a_{i j}\right)$ such that for i and j from 1 to $n, a_{i j}=$ the number of edges connecting v_{i} and v_{j}.
- Note that the adjacency matrix of an undirected graph is symmetric, i.e. for any i and j from 1 to $\mathrm{n}, \mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}}$

GRAPHS PROPERTIES

Edgeless graph

- The adjacency matrix of an edgeless graph is a zero matrix.

Complete graph

- The adjacency matrix of a complete graph is such that all entries are 1 except for the main diagonal entries which are all 0

Connected components

- Let G be a graph with connected components $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{k}}$. If each connected component G_{i} has n_{i} vertices numbered consecutively, then the adjacency matrix of G has the form

$$
\left[\begin{array}{cccccc}
A_{1} & O & \ldots & O & \ldots & O \\
O & A_{2} & \ldots & O & \ldots & O \\
\vdots & \vdots & \ddots & \vdots & & \vdots \\
O & O & \ldots & A_{i} & \ldots & O \\
\vdots & \vdots & & \vdots & \ddots & \vdots \\
O & O & \ldots & O & \ldots & A_{k}
\end{array}\right]
$$

Where each A_{i} is the $n_{i} \times n_{i}$ adjacency matrix of G_{i} and the 0 's represent matrices whose entries are all 0 .

COUNTING WALKS OF LENGTH N

- Let G be a graph with ordered vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}$ and A be the adjacency matrix of G, then for each positive integer n and for all integers i, j from 1 to m, the $i j^{\text {th }}$ entry of $A^{n}=$ the number of walks of length n from v_{i} to v_{j}.

